首页 > 58必威网站

导弹发动机有哪些种?有何特点?

来源:
时间:2024-08-17 13:43:24
热度:

导弹发动机有哪些种?有何特点?【专家解说】:导弹发动机有火箭发动机和空气喷气发动机两大类。弹道导弹采用火箭发动机,结构简单,大部分弹道处于稀薄大气层中。导弹沿一条近似半椭圆弹道飞向

【专家解说】:导弹发动机有火箭发动机和空气喷气发动机两大类。弹道导弹采用火箭发动机,结构简单,大部分弹道处于稀薄大气层中。导弹沿一条近似半椭圆弹道飞向目标,多在弹道主动段进行制导,在被动段作惯性飞行。有的在弹道末段和中段制导。各国现装备的主要是弹道导弹。巡航导弹一般采用空气喷气发动机。它在稠密大气层中靠翼面产生的气动升力和发动机推力,作等速巡航飞行,进行全程制导。 巡航导弹推进系统 包括助推器和主发动机。助推器通常采用固体或液体火箭发动机。主发动机通常采用涡轮喷气发动机、小型涡轮风扇发动机,也有采用冲压喷气发动机的。战略巡航导弹多采用推重比和比冲高的小型涡轮风扇发动机;战术巡航导弹多采用涡轮喷气发动机和冲压喷气发动机。 空气喷气发动机的导弹只带燃烧剂,不带氧化剂,比冲高,飞行高度一般在25~30千米以下。70年代发展的巡航导弹,采用尺寸小的涡轮风扇发动机,飞行速度马赫数为0.7~0.8,耗油率低,能实现低空和远距离飞行。 火箭发动机又有液体火箭发动机和固体火箭发动机两种。液体火箭发动机能量较高,推力可调节,能多次启动和关机,工作时间较长,能在较宽的温度范围内贮存和使用。固体火箭发动机的结构简单,工作可靠,反应迅速,在短时间内能产生很大的推力,使用维护简便安全,便于运输和长期贮存。但其比冲低,推力和工作时间受环境初温的影响较大,推力大小不易调节,不能多次启动和重复使用。 火箭发动机 火箭发动机是我国劳动人民首先创造出来的。早在唐代初年(约在七世纪)火药就出现了,南宋时代火药用来制造烟火,其中包括“起花”。大约在十三世纪制成火箭。我国古代制造的火箭和起花所用的是黑色火药。它们的工作原理和现代的固体燃料火箭是一样的。 同空气喷气发动机相比较,火箭发动机的最大特点是:它自身既带燃料,又带氧化剂,靠氧化剂来助燃,不需要从周围的大气层中汲取氧气。所以它不但能在大气层内,也可在大气层之外的宇宙真空中工作。这是任何空气喷气发动机都做不到的。目前发射的人造卫星、 月球飞船以及各种宇宙飞行器所用的推进装置,都是火箭发动机。 现代火箭发动机主要分固体推进剂和液体推进剂发动机。所谓“推进剂”就是燃料(燃烧剂)加氧化剂的合称。 一、固体火箭发动机 固体火箭发动机为使用固体推进剂的化学火箭发动机。固体推进剂有聚氨酯、聚丁二烯、端羟基聚丁二烯、硝酸酯增塑聚醚等。 固体火箭发动机由药柱、燃烧室、喷管组件和点火装置等组成。药柱是由推进剂与少量添加剂制成的中空圆柱体(中空部分为燃烧面,其横截面形状有圆形、星形等)。药柱置于燃烧室(一般即为发动机壳体)中。在推进剂燃烧时,燃烧室须承受2500~3500度的高温和102~2×107帕的高压力,所以须用高强度合金钢、钛合金或复合材料制造,并在药柱与燃烧内壁间装备隔热衬。 点火装置用于点燃药柱,通常由电发火管和火药盒(装黑火药或烟火剂)组成。通电后由电热丝点燃黑火药,再由黑火药点火燃药拄。 喷管除使燃气膨胀加速产生推力外,为了控制推力方向,常与推力向量控制系统组成喷管组件。该系统能改变燃气喷射角度,从而实现推力方向的改变。 药柱燃烧完毕,发动机便停止工作。 固体火箭发动机与液体火箭发动机相比较,具有结构简单,推进剂密度大,推进剂可以储存在燃烧到中常备待用和操纵方便可靠等优点。缺点是“比冲”小(也叫比推力,是发动机推力与每秒消耗推进剂重量的比值,单位为秒)。固体火箭发动机比冲在250~300秒,工作时间短,加速度大导致推力不易控制,重复起动困难,从而不利于载人飞行。 固体火箭发动机主要用作火箭弹、导弹和探空火箭的发动机,以及航天器发射和飞机起飞的助推发动机。 二、液体火箭发动机 液体火箭发动机是指液体推进剂的化学火箭发动机。常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等。氧化剂和燃烧剂必须储存在不同的储箱中。 液体火箭发动机一般由推力室、推进剂供应系统、发动机控制系统组成。 推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成,见图。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过成生成燃烧产物,以高速(2500一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达2O0大气压(约20OMPa)、温度300O~4000℃,故需要冷却。 推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。 发动机控制系统的功用是对发动机的工作程序和工作参数进行调节和控制。工作程序包括发动机起动、工作。关机三个阶段,这一过程是按预定程序自动进行的。工作参数主要指推力大小、推进剂的混合比。 液体火箭发动机的优点是比冲高(25O~5OO秒),推力范围大(单台推力在1克力~700吨力)、能反复起动、能控制推力大小、工作时间较长等。液体火箭发动机主要用作航天器发射、姿态修正与控制、轨道转移等。 液体导弹火箭发动机比冲较高,推力大,推进剂流量可调节,能准确控制关机时间。液体导弹有推进剂贮箱和增压、输送系统,发动机还有喷注器和冷却系统等。因此,结构复杂,体积较大。推进剂需有专用的运输、贮存、化验和加注设备,增加了地面设备,影响导弹的机动性。最早的液体导弹是第二次世界大战末期德国研制的V-2导弹。战后,前苏联、美国、中国等先后研制了液体导弹。如美国的"丘辟特"、"大力神"和前苏联的SS-6、SS-18、SS-19等导弹。初期的液体导弹使用的推进剂,沸点低,不便贮存。从60年代开始,液体导弹广泛使用了可贮液体推进剂。70年代,美国的"长矛"导弹使用了预包装可贮液体推进剂。80年代末,美国的液体导弹已全部由固体导弹替换。前苏联的战略弹道导弹多数仍是液体导弹。 三、其他能源的火箭发动机 (一)电火箭发动机 电火箭发动机是利用电能加速工质,形成高速射流而产生推力的火箭发动机。与化学火箭发动机不同,这种发动机的能源和工质是分开的。电能由飞行器提供,一般由太阳能、核能、化学能经转换装置得到。工质有氢、氮、氩、汞、氨等气体。 电火箭发动机由电源、电源交换器、电源调节器、工质供应系统和电推力器组成。电源和电源交换器供给电能;电源调节器的功用是按预定程序起动发动机,并不断调整电推力器的各种参数,使发动机始终处于规定的工作状态;工质供应系统则是贮存工质和输送工质;电推力器的作用是将电能转换成工质的动能,使其产生高速喷气流而产生推力。 按加速工质的方式不同,电火箭发动机有电热火箭发动机、静电火箭发动机和电磁火箭发动机的三种类型。电热火箭发动机利用电能加热(电阻加热或电弧加热)工质(氢、胺、肼等),使其气化;经喷管膨胀加速后,由喷口排出而产生推力。静电火箭发动机的工质(汞、铯、氢等)从贮箱输入电离室被电离成离子,然后在电极的静电场作用下加速成高速离子流而产生推力。电磁火箭发动机是利用电磁场加速被电离工质而产生射流,形成推力。电火箭发动机具有极高的比冲(70O~250O秒)、极长的寿命(可重复起动上万次、累计工作可达上万小时)。但产生的推力小于10ON。这种发动机仅适用于航天器的姿态控制、位置保持等。 (二)核火箭发动机 核火箭发动机用核燃料作能源,用液氢、液氦、液氨等作工质。核火箭发动机由装在推力室中的核反应堆、冷却喷管、工质输送系统和控制系统等组成。在核反应堆中,核能转变成热能以加热工质,被加热的工质经喷管膨胀加速后,以6500~1100O米/秒的速度从喷口排出而产生推力。核火箭发动机的比冲高(250~1000秒)寿命长,但技术复杂,只适用于长期工作的航天器。这种发动机由于核辐射防护、排气污染、反应堆控制,以及高效热能交换器的设计等问题未能解决,至今仍处于试验之中。此外,太阳加热式和光子火箭发动机尚处于理论探索阶段。
Baidu
map