首页 > 58必威网站

生物柴油合成制备研究中哪些问题有待解决

来源:
时间:2024-08-17 11:58:55
热度:

生物柴油合成制备研究中哪些问题有待解决【专家解说】:利用油脂原料合成生物柴油的方法;用动物油制取的生物柴油及制取方法;生物柴油和生物燃料油的添加剂;废动植物油脂生产的轻柴油乳化剂及

【专家解说】:

利用油脂原料合成生物柴油的方法;用动物油制取的生物柴油及制取方法;生物柴油和生物燃料油的添加剂;废动植物油脂生产的轻柴油乳化剂及其应用;低成本无污染的生物质液化工艺及装置;低能耗生物质热裂解的工艺及装置;利用微藻快速热解制备生物柴油的方法;用废塑料、废油、废植物油脚提取汽、柴油用的解聚釜,生物质气化制备燃料气的方法及气化反应装置;以植物油脚中提取石油制品的工艺方法;用等离子体热解气化生物质制取合成气的方法,用淀粉酶解培养异养藻制备生物柴油的方法;用生物质生产液体燃料的方法;用植物油下脚料生产燃油的工艺方法,由生物质水解残渣制备生物油的方法,植物油脚提取汽油柴油的生产方法;废油再生燃料油的装置和方法;脱除催化裂化柴油中胶质的方法;废橡胶(废塑料、废机油)提炼燃料油的环保型新工艺,脱除柴油中氧化总不溶物及胶质的化学精制方法;阻止柴油、汽油变色和胶凝的助剂;废润滑油的絮凝分离处理方法。 生物柴油的化学法生产是采用生物油脂与甲醇或乙醇等低碳醇,并使用氢氧化钠(占油脂重量的1%) 或醇甲钠 (Sodium methoxide) 做为触媒,在酸性或者碱性催化剂和高温(230~250℃)下发生酯交换反应(transesterification),生成相应的脂肪酸甲酯或乙酯,再经洗涤干燥即得生物柴油。甲醇或乙醇在生产过程中可循环使用,生产设备与一般制油设备相同,生产过程中产生10%左右的副产品甘油。
但化学法合成生物柴油有以下缺点:反应温度较高、工艺复杂;反应过程中使用过量的甲醇,后续工艺必须有相应的醇回收装置,处理过程繁复、能耗高;油脂原料中的水和游离脂肪酸会严重影响生物柴油得率及质量;产品纯化复杂,酯化产物难于回收;反应生成的副产物难于去除,而且使用酸碱催化剂产生大量的废水,废碱(酸)液排放容易对环境造成二次污染等。
化学法生产还有一个不容忽视的成本问题:生产过程中使用碱性催化剂要求原料必须是毛油,比如未经提炼的菜籽油和豆油,原料成本就占总成本的75%。因此采用廉价原料及提高转化从而降低成本是生物柴油能否实用化的关键,因此美国己开始通过基因工程方法研究高油含量的植物(见下文“工程微藻”法),日本采用工业废油和废煎炸油,欧洲是在不适合种植粮食的土地上种植富油脂的农作物。 为解决上述问题,人们开始研究用生物酶法合成生物柴油,即用动物油脂和低碳醇通过脂肪酶进行转酯化反应,制备相应的脂肪酸甲酯及乙酯。酶法合成生物柴油具有条件温和、醇用量小、无污染排放的优点。2001年日本采用固定化Rhizopus oryzae细胞生产生物柴油,转化率在80%左右,微生物细胞可连续使用430小时。
2005年6月4日,《中国环境报》报道:清华大学生物酶法制生物柴油中试成功,采用新工艺在中试装置上生物柴油产率达90%以上。中试产品技术指标符合美国及德国的生物柴油标准,并满足中国0号优等柴油标准。中试产品经发动机台架对比试验表明,与市售石化柴油相比,采用含20%生物柴油的混配柴油作燃料,发动机排放尾气中一氧化碳、碳氢化合物、烟度等主要有毒成分的浓度显著下降,发动机动力特性等基本不变。
由于利用生物酶法合成生物柴油具有反应条件温和、醇用量小、无污染物排放等优点,具有环境友好性,因而日益受到人们的重视。但利用生物酶法制备生物柴油目前存在着一些亟待解决的问题:脂肪酶对长链脂肪醇的酯化或转酯化有效,而对短链脂肪醇(如甲醇或乙醇等)转化率低,一般仅为40%-60%;甲醇和乙醇对酶有一定的毒性,容易使酶失活;副产物甘油和水难以回收,不但对产物形成一致,而且甘油也对酶有毒性;短链脂肪醇和甘油的存在都影响酶的反应活性及稳定性,使固化酶的使用寿命大大缩短。这些问题是生物酶法工业化生产生物柴油的主要瓶颈。 1.采用固定床式酶反应器,以植物油及废油等为原料生产生物柴油,转化率均可达到95%以上,最高转化率可以达到96%。
2.建立了生物柴油精馏装置,分离精制收率高于86%,分离后产品中甲酯含量大于97%,分离后产品各项指标完全符合德国生物柴油生产标准(DIN5160697)。
3.建立了年产500t的生物柴油中试生产装置。反应器内固定化酶使用寿命超过20天。
4.以地沟油为原料生产生物柴油,成本约为3058元/t,以普通菜籽油为原料生产生物柴油,成本约为4300元/t。
5.燃烧性能明显优于0号柴油。在0号柴油中添加20%生物柴油的燃烧试验表明,燃烧尾气中有毒物质的排放降低35%以上。 “工程微藻”生产柴油,为柴油生产开辟了一条新的技术途径。美国国家可更新实验室(NREL)通过现代生物技术建成“工程微藻”,即硅藻类的一种“工程小环藻”。在实验室条件下可使“工程微藻”中脂质含量增加到60%以上,户外生产也可增加到40%以上,而一般自然状态下微藻的脂质含量为5%-20%。“工程微藻”中脂质含量的提高主要由于乙酰辅酶A羧化酶(ACC)基因在微藻细胞中的高效表达,在控制脂质积累水平方面起到了重要作用。目前,正在研究选择合适的分子载体,使ACC基因在细菌、酵母和植物中充分表达,还进一步将修饰的ACC基因引入微藻中以获得更高效表达。利用“工程微藻”生产柴油具有重要经济意义和生态意义,其优越性在于:微藻生产能力高、用海水作为天然培养基可节约农业资源;比陆生植物单产油脂高出几十倍;生产的生物柴油不含硫,燃烧时不排放有毒害气体,排入环境中也可被微生物降解,不污染环境,发展富含油质的微藻或者“工程微藻”是生产生物柴油的一大趋势。

Baidu
map