首页 > 

多晶黑硅、N型单晶双面及P型单晶PERC技术优劣分析对比

来源:
时间:2017-05-17 14:33:44
热度:

多晶黑硅、N型单晶双面及P型单晶PERC技术优劣分析对比2015年光伏领跑者计划推出,国家通过此项计划引导光伏行业有序升级,行业积极响应并顺势加快高效电池技术从研发走向量产的步伐。

2015年光伏领跑者计划推出,国家通过此项计划引导光伏行业有序升级,行业积极响应并顺势加快高效电池技术从研发走向量产的步伐。经过市场大浪淘沙,光伏行业主要选择的主要高效电池技术有多晶黑硅电池技术、N型单晶双面电池技术以及P型单晶PERC电池技术。下面就电池工艺、组件功率、光致衰减、隐裂等方面探讨上述几种技术的优劣。

一、PERC单晶电池

1、PERC单晶单面电池

常规单晶电池主要效率区间为19.8-20%,对应的组件功率为280W。为了进一步提升单晶电池效率,在电池背面增加了钝化层。通过背面钝化层的作用,电池的表面复合速率显著降低,电池的效率提升到20.8-21%,对应的组件功率由280W提升到290W。

和常规单晶电池工艺相比,PERC单晶电池主要增加了背面钝化、背面SiNx膜沉积和激光打孔三道工艺。其中激光打孔工艺是利用一定脉冲宽度的激光在去除部分覆盖在电池背面的钝化层和SiNx覆盖层,以使丝网印刷的铝浆可以与电池背面的硅片形成有效接触,从而使光生电流可以通过Al层导出。因Al浆无法穿透SiNx层,其余未被激光去除的钝化层被覆盖在其上方的SiNx覆盖层保护,发挥降低表面复合速率,提升效率的作用。

通常背面的激光开孔面积约占电池片表面积的5-10%,如激光开孔面积过低,则光生电流在传输过程中电阻较大,从而产生较大的热损失,导致电流效率降低。如激光开孔面积过大,则钝化层无法有效发挥降低表面复合速率的作用,导致电池的效率无法有效提升。激光开孔工艺在电池片表面产生了5-10%的损伤。作为整片单一晶体,PERC单晶由于背面的完整晶体结构被破坏,有很大的隐裂或破碎的风险,晶体损伤可能导致硅片沿着此损伤整片碎裂。PERC单晶电池由于正反面金属结构不同所造成的2-5mm的翘曲,翘曲应力和激光损伤的联合作用下,PERC单晶电池的隐裂或破碎的风险将显著提高。

组件应用在光伏电站后,在整个生命周期内,组件都需要持续经受机械载荷或风载荷等考验。为了保证组件在光伏电站使用的可靠性,组件都需通过5400Pa机械载荷测试,行业标准是测试后组件功率的衰减量小于5%,因为激光开孔工艺造成的损伤导致硅片破碎几率增大,因此PERC单晶组件经过机械载荷测试后的衰减普遍大于5%,而常规单多晶组件的机械载荷测试功率衰减量普遍小于3%。可以看出PERC单晶组件的机械载荷衰减率明显高于其他组件产品。对光伏电站来说,在雪载荷和风载荷等的持续用下,PERC单晶组件从激光开孔点开始逐渐出现隐裂和破片,伴随的是组件功率的持续下降。PERC电池的高机械载荷衰减率PERC单晶组件的这一缺陷给光伏电站发电量带来了极大不确定性。为了缓解PERC单晶在机械载荷和隐裂方面的缺陷,行业采取在组件背面添加加固横梁的方式,并进行了采用加厚硅片来缓解隐裂的尝试,但这些方法均提高了组件的单瓦成本,与降低度电成本的大方向背道而驰。

   首页   下一页   上一页   尾页 
Baidu
map