首页 > 

微生物所在提高光合作用效率研究中取得进展

来源:
时间:2016-09-06 14:03:11
热度:

微生物所在提高光合作用效率研究中取得进展人们熟知的“万物生长靠太阳”现象,其基本原理是在高等植物、藻类和蓝细菌这些生物中发生放氧型光合作用。这些生物通过光合

人们熟知的“万物生长靠太阳”现象,其基本原理是在高等植物、藻类和蓝细菌这些生物中发生放氧型光合作用。这些生物通过光合作用固定CO2,把太阳能转化为化学能储存下来,同时将水分子裂解并释放出氧气,供生物呼吸。光合作用是地球上最重要的生物化学反应,为地球生物提供赖以生存的物质基础。因此,提高光合作用效率,对有效利用太阳能、促进农业增产增收、加速工业CO2减排和资源化利用等,都具有重要意义。

  光合作用又是一个极其复杂的生化过程。根据是否需要光,光合作用被人为地分为光反应和暗反应。以往改造光合作用的研究,主要考虑如何提高光反应对光能的利用与转化效率,或提高暗反应关键酶Rubisco固碳效率,很少考虑如何提高光反应和暗反应的偶联效率。而在实际的生理过程中,光合作用的光反应和暗反应是密不可分的有机整体。光反应产生能量(ATP)和还原力(NADPH),而暗反应需要消耗ATP和NADPH,才能实现对CO2的还原固定。

  中国科学院微生物研究所李寅研究组针对光反应产生的ATP不能满足暗反应固碳能量需求这一基本问题,根据光反应中ATP与NADPH偶联产生的基本原理,从细胞全局出发,把光合作用的光反应和暗反应作为有机整体,以连接光合作用光反应和暗反应的NADPH为切入点,提出了一个导入NADPH消耗模块,从而打破细胞固有的NADPH平衡,通过光反应与暗反应的有效耦联来增强光反应的内在驱动力、进而提高光合作用效率的新构想。

  研究人员以光合放氧菌蓝细菌为研究模型,通过引入NADPH依赖型的脱氢酶,创建了只消耗NADPH而不额外消耗ATP的异丙醇生物合成途径(如图)。一系列光合生理和生化分析表明,引入NADPH消耗途径后,细胞生长明显加快,光合作用效率提高约50%,同时具有更高的细胞活性。同时发现,改造后蓝细菌的光饱和点提高一倍,表明其可以耐受更高光强,这对适应自然界中光强的剧烈变化具有重要意义。这一结果表明,还原力驱动的细胞全局代谢工程策略,比传统单一改造光反应或暗反应,可以更有效地提高光合作用效率,这一策略对改造真核生物的光合作用也具有参考价值。

  该工作已于8月4日在线发表在《代谢工程》(metabolicEngineering)杂志上。研究得到国家自然科学基金和中科院重点部署项目“二氧化碳的人工生物转化”资助。副研究员周杰和博士生张福良为论文的共同第一作者。

Baidu
map