国务院关于印发《2024—2025年节能降碳行动方案》的通知
渔光互补光伏系统依然有潜在缺陷?
渔光互补光伏系统依然有潜在缺陷?应用越来越多,电站规模越来越大,近年来“渔光互补”这种新型光伏发电形式也在东部地区开始普遍应用,上层用于光伏发电,下层用于水
应用越来越多,电站规模越来越大,近年来“渔光互补”这种新型光伏发电形式也在东部地区开始普遍应用,上层用于光伏发电,下层用于水产养殖。
由于只要将光伏面板支架立体布置于水面上方及鱼塘沿岸,因此不仅节约了土地,提高了单位面积土地经济价值,在发电的同时也不会影响水产养殖,具有“一地两用,渔光互补”的特点。
然而,和普通大型地面电站相比,“渔光互补”电站也存在一定难点,由于潮湿、高温的环境容易产生水蒸气,如果水汽深入组件,那么封装材料(ENC)的导电率上升,相应组件的泄漏电流增大,会造成组件表面极化现象,即PID效应。因此组件在高湿或高温环境的光伏系统尤其是渔光互补光伏系统、沿海光伏系统、赤道附近的光伏系统中因为PID效应导致的功率损失比较厉害。
PID效应及形成原因分析
PID效应(Potential Induced Degradation)又称电势诱导衰减,是电池组件的封装材料和其上表面及下表面的材料,电池片与其接地金属边框之间的高电压作用下出现离子迁移,而造成组件性能衰减的现象。
外部可能原因:
容易在潮湿的环境下发生,并且活跃程度与潮湿程度相关,同时组件表面被导电性、酸性、碱性以及带有离子的物体的污染程度,也与上述衰减现象的发生有关。到目前为止,形成机理还不是太明确,推测来自于钠钙玻璃的金属离子是形成上述具有PID效应的漏电流的主要载流介质。
内部可能原因:
系统方面:逆变器接地方式和组件在阵列中的位置,决定了电池片和组件受到正偏压或者负偏压。电站实际运行情况和研究结果表明:如果整列中间一块组件和逆变器负极输出端之间的所有组件处于负偏压下,则越靠近输出端组件的PID现象越明显。而在中间一块组件和逆变器正极输出端中间的所有组件处于正偏压下,PID现象不明显。
组件方面:环境条件,如湿度等的影响导致了漏电流的产生。
电池方面:电池片由于参杂不均匀导致方块电阻不均匀;优化电池效率而采用的增加方块电阻会使电池片更容易衰减,导致容易发生PID效应。
因此组件在高湿度环境的光伏系统尤其是渔光互补光伏系统、沿海光伏系统、赤道附近的光伏系统中因为PID效应导致的功率损失比较厉害。
-
2016年新能源汽车补贴标准公布 2.5万起2024-08-16