首页 > 

全揭秘LED照明设计之驱动的选择与设计技巧

来源:
时间:2015-03-06 16:37:12
热度:

全揭秘LED照明设计之驱动的选择与设计技巧LED的排列方式及LED光源的规范决定着基本的驱动器要求。LED驱动器的主要功能就是在一定的工作条件范围下限制流过LED的电流,而无论输入

LED的排列方式及LED光源的规范决定着基本的驱动器要求。LED驱动器的主要功能就是在一定的工作条件范围下限制流过LED的电流,而无论输入及输出电压如何变化。LED驱动器基本的工作电路示意图如图1所示,其中所谓的“隔离”表示交流线路电压与LED(即输入与输出)之间没有物理上的电气连接,最常用的是采用变压器来电气隔离,而“非隔离”则没有采用高频变压器来电气隔离。   如何选择LED驱动方式   如今在市场上典型的LED驱动器包括两类,即线性驱动器和开关驱动器;大概的适用范围见图2.如电流大于500mA的大电流应用采用开关稳压器,因为线性驱动器限于自身结构原因,无法提供这样大的电流;而在电流低于200mA的低电流应用中,通常采用线性稳压器或分离稳压器;而在200至500mA的中等电流应用中,既可以采用线性稳压器,也可以采用开关稳压器。   开关稳压器的能效高,且提供极佳的亮度控制。线性稳压器结构比较简单,易于设计,提供稳流及过流保护,且没有电磁兼容性(EMC)问题。   在低电流LED应用中,电阻型驱动器尽管成本较低且结构简单,但这种驱动器在低电压条件下,正向电流较低,会导致LED亮度不足,且在负载突降等瞬态条件下,LED可能受损;并且电阻是耗能元件,整个方案的能效较低,见图2。   例如在采用DC-DC电源的LED照明应用中,可以采用的LED驱动方式有电阻型、线性稳压器及开关稳压器等,基本的应用示意图见图3。   电阻型驱动方式中,调整与LED串联的电流检测电阻即可控制LED的正向电流,这种驱动方式易于设计、成本低,且没有电磁兼容(EMC)问题,劣势是依赖于电压、需要筛选(binning)LED,且能效较低。   线性稳压器同样易于设计且没有EMC问题,还支持电流稳流及过流保护(foldback),且提供外部电流设定点,不足在于功率耗散问题,及输入电压要始终高于正向电压,且能效不高。开关稳压器通过PWM控制模块不断控制开关(FET)的开和关,进而控制电流的流动。   开关稳压器具有更高的能效,与电压无关,且能控制亮度,不足则是成本相对较高,复杂度也更高,且存在电磁干扰(EMI)问题。LEDDC-DC开关稳压器常见的拓扑结构包括降压(Buck)、升压(Boost)、降压-升压(Buck-Boost)或单端初级电感转换器(SEPIC)等不同类型。   其中,所有工作条件下最低输入电压都大于LED串最大电压时采用降压结构,如采用24Vdc驱动6颗串联的LED;与之相反,所有工作条件下最大输入电压都小于最低输出电压时采用升压结构,如采用12Vdc驱动6颗串联的LED;而输入电压与输出电压范围有交迭时可以采用降压-升压或SEPIC结构,如采用12Vdc或12Vac驱动4颗串联的LED,但这种结构的成本及能效最不理想。   LED驱动设计5大技巧要领   1、芯片发热   这主要针对内置电源调制器的高压驱动芯片。假如芯片消耗的电流为2mA,300V的电压加在芯片上面,芯片的功耗为0.6W,当然会引起芯片的发热。驱动芯片的最大电流来自于驱动功率MOS管的消耗,简单的计算公式为I=cvf(考虑充电的电阻效益,实际I=2cvf,其中c为功率MOS管的cgs电容,v为功率管导通时的gate电压,所以为了降低芯片的功耗,必须想办法降低c、v和f.如果c、v和f不能改变,那么请想办法将芯片的功耗分到芯片外的器件,注意不要引入额外的功耗。再简单一点,就是考虑更好的散热吧。   2、功率管发热   功率管的功耗分成两部分,开关损耗和导通损耗。要注意,大多数场合特别是LED市电驱动应用,开关损害要远大于导通损耗。开关损耗与功率管的cgd和cgs以及芯片的驱动能力和工作频率有关,所以要解决功率管的发热可以从以下几个方面解决:   A、不能片面根据导通电阻大小来选择MOS功率管,因为内阻越小,cgs和cgd电容越大。如1N60的cgs为250pF左右,2N60的cgs为350pF左右,5N60的cgs为1200pF左右,差别太大了,选择功率管时,够用就可以了。   B、剩下的就是频率和芯片驱动能力了,这里只谈频率的影响。频率与导通损耗也成正比,所以功率管发热时,首先要想想是不是频率选择的有点高。想办法降低频率吧!不过要注意,当频率降低时,为了得到相同的负载能力,峰值电流必然要变大或者电感也变大,这都有可能导致电感进入饱和区域。如果电感饱和电流够大,可以考虑将CCM(连续电流模式)改变成DCM(非连续电流模式),这样就需要增加一个负载电容了。   3、工作频率降频   这个也是用户在调试过程中比较常见的现象,降频主要由两个方面导致。输入电压和负载电压的比例小、系统干扰大。对于前者,注意不要将负载电压设置的太高,虽然负载电压高,效率会高点。   对于后者,可以尝试以下几个方面:   a、将最小电流设置的再小点;   b、布线干净点,特别是sense这个关键路径;   c、将电感选择的小点或者选用闭合磁路的电感;   d、加RC低通滤波吧,这个影响有点不好,C的一致性不好,偏差有点大,不过对于照明来说应该够了。无论如何降频没有好处,只有坏处,所以一定要解决。   4、电感或者变压器的选择   很多用户反应,相同的驱动电路,用a生产的电感没有问题,用b生产的电感电流就变小了。遇到这种情况,要看看电感电流波形。有的工程师没有注意到这个现象,直接调节sense电阻或者工作频率达到需要的电流,这样做可能会严重影响LED的使用寿命。所以说,在设计前,合理的计算是必须的,如果理论计算的参数和调试参数差的有点远,要考虑是否降频和变压器是否饱和。变压器饱和时,L会变小,导致传输delay引起的峰值电流增量急剧上升,那么LED的峰值电流也跟着增加。在平均电流不变的前提下,只能看着光衰了。   5、LED电流大小   我们都知道LEDripple过大的话,LED寿命会受到影响。对于LEDripple过高影响有多大,一些LED厂表示30%以内都可以接受,不过后来没有经过验证。建议还是尽量控制小点。如果散热解决的不好的话,LED一定要降额使用。也希望有专家能给个具体指标,要不然影响LED的推广。   针对本文,相信你会觉得LED驱动设计并不难,一定要做到心中有数,只要做到调试前计算,调试时测量,调试后老化,相信我们都可以轻松搞LED了。
Baidu
map