首页 > 

上海地区各种光伏组件户外发电性能比较和衰减原因分析

来源:
时间:2020-01-19 11:02:27
热度:

上海地区各种光伏组件户外发电性能比较和衰减原因分析:主要利用中国科学院上海微系统与信息技术研究所嘉定园区配置的光伏组件户外测试系统,针对各种光伏组件( 类型包括:多晶硅、n 型单面

:主要利用中国科学院上海微系统与信息技术研究所嘉定园区配置的光伏组件户外测试系统,针对各种光伏组件( 类型包括:多晶硅、n 型单面和双面、PERC 单晶硅和多晶硅、12 栅单晶硅、HIT 单面和双面、CIGS 组件、CdTe 组件) 在上海地区的应用,于2016 年6 月1 日~2018 年7 月20 日开展了户外实证监测。首先通过室内标定对比了各种光伏组件的衰减,然后利用户外实证发电量对比了各种光伏组件的户外发电性能,进而分析了各种光伏组件的衰减原因。

(来源:微信公众号“太阳能杂志”ID:tynzz1980)

01实验条件

1.1 光伏组件信息

本次研究监测的光伏组件类型包括:多晶硅组件、n 型单面和双面组件、PERC 单晶硅和多晶硅组件、12 栅单晶硅组件、HIT 单面和双面组件、CIGS 组件、CdTe 组件,每种组件的数量不同。其中,对CIGS 组件、多晶硅组件1 和多晶硅组件2 ,持续监测26 个月;对n 型单面组件、n 型双面组件1 和n 型双面组件2,持续监测19 个月;对PERC 单晶硅组件1、PERC 单晶硅组件2、PERC 多晶硅组件、12 栅单晶硅组件、多晶硅组件4、HIT 单面组件、HIT 双面组件和CdTe 组件,持续监测13 个月;对多晶硅组件3,持续监测10 个月( 注:同类组件中的1、2、3、4 是为区分不同生产商的产品)。

每种组件在进行户外监测前,都在STC 条件( 测试温度25 ℃,AM 1.5 模拟光源,光强1000 W/m2) 下进行了室内标定。

1.2 光伏组件户外测试系统介绍

本次户外实证监测使用的光伏组件户外测试系统由中国科学院上海微系统与信息技术研究所——新能源技术中心配置,坐落于上海市嘉定区(31°23′N、121°14′E)。本光伏组件户外测试系统作为测试太阳电池发电特性与可靠性的设备,主要用于长时间在户外测试光伏组件的工作情况,记录不同环境下组件相应的电学参数,对光伏组件的真实发电能力与衰减状况进行测试。

光伏组件户外测试系统是根据IEC 61924、IEC61829、IEC6 2446 等标准[11-12] 建立的,对光伏组件在户外的性能进行标准测试和性能评估,其结构图和实景图分别如图1、图2 所示。本测试系统的测试对象为光伏阵列,共有24 个通道(channel),每个通道容许的电压范围为100~400 V,每个通道的组件采用串联或并联的连接方式,每个通道监测一种光伏组串;每个光伏组串连接1个接线盒 (conversion box);每6 个通道用1 个集线器 (Cable collection device) 收集直流端电流,I-V 数据采集器(I-V tracer) 收集的是直流端数据,所以本文后续发电量和PR 值的计算都是采用组件直流端数据;每6 个通道的直流端数据通过1台多组串式逆变器 (invertor) 转换为交流电,本系统中共有4 台多组串式逆变器。

1.png

该光伏组件户外测试系统的技术特点为:光伏阵列可通过阵列选择器在多组串式逆变器与I-V 数据采集器间切换测试,整个测试系统既能工作在真实并网环境中,也可以准确测试组件实际发电性能;多组串式逆变器的使用可以解决不同阵列共同并网的问题,并缩短组件在切换过程中恢复正常工作状态的时间;所用I-V 数据采集器为阻性,可测试大功率光伏阵列,1 台I-V 数据采集器可拓展测试48 个光伏阵列。

1.3 光伏组件户外实证发电性能评价指标的确立

由于光伏发电系统在户外运行,测试环境不像实验室中那样稳定,对其进行性能评价需要采用行业公认的技术参数。本研究中采用等效发电时长和等效辐照时长这2 个参数。

1) 等效发电时长YF。由于不同类型光伏组件的功率不同,不同类型组件间的发电性能并无可比性。YF 表示光伏组串每天在其额定功率下的发电时长,可以用来对比每种光伏组串每kW的发电性能。在不考虑辐照度的影响时,等效发电时长就可以代表不同类型组件发电性能的差异。

2.png

式中,∫PMAX 为光伏组串每天的总发电量;Pnominal 为对应光伏组串的额定功率。

3.png

2) 等效辐照时长YR。同样,YR 表示在标准辐照度 (1 kW/m2) 下,某一地点或位置每天的日照小时数,也就是峰值日照小时数,单位为h。式中,∫G 为某地点或位置每天的总辐照度;G nominal 为STC 条件下的辐照度,取值为1000W/m2。

1.4 本测试系统监测使用的主要设备

1.4.1 数据采集系统

本户外测试系统采用的数据采集系统为日本EKO 生产的I-V 数据采集系统MP165。其中,辐照度由1 台辐照度测试仪MI530 监测,热电偶采集到的背板温度由2 台温度测试仪MI540 监测 ( 每台MI540 可监测12 个通道的热电偶情况,本测试系统共有24 个测试通道,所以需要2 台MI540)。

组件端I-V 测试结果先输入4 台通道开关选择器MP-303S ( 每台连接6 个通道),MP-303S 的输出端口一部分直接连接逆变器,将直流电转成交流电并网;另一部分连接MP165,进行每个组串I-V曲线的扫描。24 个组串经过4 台MP-303S 并入MP165,间隔2 mins 进行下一次的循环扫描。由1 台MI530、2 台MI540 和4 台MP-303S 采集到的数据汇总传递给MP165。通过MP165 的软件控制界面,光伏组件的I-V 曲线被实时监控;同时,光伏组件的温度、辐照量和发电量等信息也可以从MP165 中获得。

1.4.2 气象设备

本户外测试系统中的气象监测设备从日本EKO 采购,包括倾斜辐照计 (Pyranometerfor Tilt: MS-802) 、水平辐照计 (Pyranometer forHorizontal plane: MS-802) 、风速监控仪(WindMonitor: A-110/MI-360)、温湿度监控仪(Temp.Huity: MT-063A)、雨量监测仪 (Rain Gauge:MW-010)、气压计(Barometer: MY-021),别对整个户外测试系统的辐照量、风速风向、温湿度、雨量和气压进行实时监控,并将具体信息体现在气象监测软件HIOKI 中。

1.4.3 多组串式逆变器

本户外测试系统采用的逆变设备是上海追日电气生产的多组串式逆变器。该逆变器适用于小批量的薄膜、晶体硅太阳电池及组件测试,在光伏组件数量少、串联电压低 ( 小于100 V) 的情况下,仍能达到最多6 路输入运行。将光伏组件串联成组串后,经直流升压器做MPPT 最大功率跟踪,并通过交流逆变器回馈电网。

1.4.4 光谱仪

本户外测试系统同时配置了实时采集太阳光谱的光谱仪,型号分别为MS-711 和MS-712,并利用软件WSDac 监测户外太阳光谱情况。

1.4.5 监测时间和技术方案

户外实证的监测时间为2016 年6 月1 日~2018年7 月20 日。各种光伏组件的安装高度均为30cm,安装角度均为30°。本户外实证实验将不同类型的光伏组件分为若干个独立的组串,每个测试通道监测1 种类型光伏组件的户外发电性能。每种组件所在通道平均年累积辐照度为1293.37kWh/m2,即4656.13 MJ/m2。

02结果与讨论

2.1 通过室内标定对比各种光伏组件的衰减

本研究中最早的光伏组件安装于2016 年6月1 日,后续为增加研究内容,相继在不同时间增添了各种类型的光伏组件,所有组件于2018年1 月22 日在室内进行了重新标定。截止到2018 年1 月22 日,每种组件的室内标定结果与此前未经过曝晒时的标定结果对比的变化值如表1 所示。需要说明的是,由于目前国际上还没有CIGS 组件和CdTe 组件的室内标准测试方法,因此即使进行了室内测试,其结果也并不准确,所以表1 中未体现这2 种组件的室内测试数据和衰减数据。

4.png

从表1 中可以看出:

1) 监测20 个月的多晶硅组件1 和多晶硅组件2 的功率衰减率分别为3.26% 和3.09%,与文献中报道的“光伏组件首年衰减2.5%,以后每年衰减0.7%”比较符合。基本可以认为这2种多晶硅组件首年功率衰减了2.5%,后7 个月分别衰减了0.76% 和0.59%。

2) 监测13 个月的n 型单面组件、n 型双面组件1 和n 型双面组件2 的功率衰减率分别为0.86%、0.29% 和0.75%,与文献报道的“光伏组件首年衰减2.5%,以后每年衰减0.7%”相差较远。目前的监测结果表明,n 型光伏组件的衰减确实较小,这与p 型硅中含有B-O 复合对,而n 型硅的少子寿命长,使n 型光伏组件的衰减较低有关。

3) 通过分析监测时间为7 个月的光伏组件衰减数据可以看出,这些组件的功率衰减从大到小依次为:PERC 多晶硅组件 (2.69%)>12 栅单晶硅组件(1.82%)> 多晶硅组件4(1.54%)>HIT单面组件(1.24%)> PERC 单晶硅组件2 (1.11%)>PERC 单晶硅组件1 (0.94%)>HIT 双面组件(0.59%)。

还可以看出,HIT 单面组件的功率衰减大于PERC 单晶硅组件1 和PERC 单晶硅组件2,衰减主要体现在电压上,即HIT 单面组件的电压衰减为0.65%,PERC 单晶硅组件2 和PERC 单晶硅组件1 的电压衰减分别为0.23% 和0.06%。

从电池的制备工艺来看,可能是异质结界面没有同质结界面稳定,长期的户外曝晒会使导致HIT界面性能受到影响,从而导致组件电压的下降。从表1 还可以看出,HIT 单面组件的功率衰减小于PERC 多晶硅组件、12 栅单晶硅组件和多晶硅组件4,但HIT 单面组件的电压衰减(0.65%) 较12 栅单晶硅组件(0.16%) 和多晶硅组件4 (0.35% ) 而言还是较为明显的,HIT 单面组件的优势主要体现在电流衰减较小。

除此之外可以看到,除了HIT 单面组件和HIT 双面组件外,其他晶体硅组件的衰减主要都是由电流引起的。而2 种HIT 组件的衰减主要都是由开路电压导致的,即HIT 双面组件的开路电压衰减 (0.31%)> 电流衰减 (0.18%),HIT 单面组件的开路电压衰减 (0.65%)> 电流衰减 (0.32%),再次证明了对于HIT 组件来说,开路电压的衰减是影响其性能的主要因素。

2.2 通过户外实证发电量对比各种光伏组件的户外发电性能

因2017 年6 月29 日在本户外测试系统中新增了大量组件,所以以下关于户外实证研究的时间范围为2017 年6 月29 日~2018 年7 月20 日。其中,12 栅单晶硅组件、PERC 单晶硅组件1、PERC 多晶硅组件、CdTe 组件的曝晒时间为12个月,数据采集时间为12 个月;CIGS 组件的曝晒时间为24 个月,数据采集为12 个月,所以本研究中CIGS 组件的等效发电时长是在已经衰减了1 年的基础上采集的数据;HIT 单面组件因通道损坏,曝晒时间为12 个月,数据采集时间为8.5个月;多晶硅组件4 因组件更替,曝晒时间不足,故没有进行户外发电性能对比;4 块PERC 单晶硅组件2 组成了1 个组串,但其中1 块组件出现了明显隐裂,因此也没有进行户外发电性能对比。

由于光伏组件的户外实证实验环境因素多变,实验的不确定度很大,因此系统的维护和组件的交替更换时有发生。表2 和图3 对比了2017 年6 月29 日~2018 年7 月20 日各种光伏组件每天平均等效发电时长和所在通道平均等效辐照时长。

5.png

从表2 和图3 的监测各种光伏组件的户外平均发电实证数据可以看出,各种光伏组件户外平均等效发电时长的比较结果为:CIGS 组件>HIT单面组件> 12 栅单晶硅组件> PERC 单晶硅组件1> PERC 多晶硅组件>CdTe 组件;并且,每种组件所在通道的平均等效辐照时长比较接近。由数据可以看出,CIGS 组件的平均等效发电时长大于其平均等效辐照时长,造成这一现象是因为在昼夜交替的光照变化下,CIGS 组件的实际发电功率较额定功率可能上升,所以出现了平均等效发电时长大于平均等效辐照时长的情况。

2.3 光伏组件的衰减原因分析

根据近30 年的研究结果,光伏组件衰减原因主要包括以下5 个方面:

1) 封装材料的衰减、封装玻璃的破坏、旁路二极管的失效、封装材料的变色、背板开裂及分层;

2) 组件各层材料粘结性的下降;

3) 电池和组件互联部分的衰减,焊带和焊接点的脱落;

4) 潮湿导致的组件衰减;

5) 作为半导体器件的太阳电池自身的衰减。已有不少学者分析了不同组件的衰减原因并给出了预防措施。

6.png

表3 对8 种光伏组件的衰减原因进行了总结。其中,封装材料的衰减、组件各层材料粘结性的下降、电池和组件互联部分的衰减、潮湿导致的组件衰减,可能在测试前已经存在于组件中,但由于户外监测时间不足,并未体现出来。但表1中的n 型单面组件在经过了18 个月的户外曝晒后,肉眼已经可以看到组件边缘出现电池老化和褪色现象,猜测造成这一现象的原因是湿气从组件边缘进入,导致了组件边缘发白。

在对以上8 种组件进行的户外监测中,封装玻璃的破坏、旁路二极管的失效、背板开裂和分层,以及焊带或焊接点的脱落等衰减原因并未监测到;但CdTe 组件因安装压块不牢固,在上海台风期间,组件封装玻璃发生了明显破裂,认为这与组件的安装压块选择有关。除此之外,作为半导体器件的太阳电池自身的衰减是光伏组件衰减的主要原因,其中,HIT 单面组件中晶体硅和非晶硅界面的衰减是致使该组件衰减的主要原因,在前文已进行过详细分析;其他组件的衰减均是由于光照导致的电池自身衰减,这可能是导致光伏组件衰减的重要原因。

03结论

本研究主要利用光伏组件户外测试系统,对在上海地区应用的各种光伏组件的户外实证发电量及衰减原因进行了分析,得到如下结果:

1) 在光伏组件衰减方面:多晶硅组件1 和2在户外曝晒20 个月后的功率衰减约为3%,与文献报道的“光伏组件首年衰减2.5%,以后每年衰减0.7%”比较符合。n 型单面组件和2 种n 型双面组件在户外曝晒13 个月后的功率分别衰减了0.86%、0.29% 和0.75%,目前的监测结果表明n 型组件的衰减确实较小。通过7 个月的户外曝晒,几种光伏组件的功率衰减从大到小的顺序为:PERC 多晶硅组件(2.69%) > 12 栅单晶组件(1.82%) > 多晶硅组件4 (1.54%) >HIT 单面组件(1.24%) > PERC 单晶硅组件2 (1.11%) > PERC 单晶硅组件1 (0.94%) >HIT 双面组件 (0.59%)。其中,开路电压的降低是导致HIT 组件衰减的主要因素。

2) 在光伏组件户外发电性能方面:CIGS 组件>HIT 单面组件>12 栅单晶硅组件> PERC 单晶硅组件1> PERC 多晶硅组件>CdTe 组件。其中,由于在昼夜交替的光照变化下,CIGS 组件的实际发电功率较额定功率可能会上升,因此CIGS组件出现了平均等效发电时长大于平均等效辐照时长的情况。

3) 在光伏组件衰减原因方面:首先,封装材料的衰减、组件各层材料粘结性的下降、电池和组件互联部分的衰减、潮湿导致的组件衰减,可能在测试前已存在于组件中,但由于户外监测时间不足,并未来体现出来;其次,封装玻璃的破坏、旁路二极管的失效、背板的开裂和分层,以及焊带或焊接点的脱落等衰减原因,目前并未监测到;第三,由于光照导致的电池自身的衰减,也许是导致光伏组件衰减的重要原因。

因为光伏组件的户外实证监测实验条件多变,实验的不确定性很大,因此系统的维护和组件的交替更换时有发生,在长年的工作中并不是每一种光伏组件的监测时间和条件都完全一致。后续需要延长监测时间,使数据积累充足并具有统计性,持续监测各种光伏组件的户外发电性能。

中国科学院上海微系统与信息技术研究所

高兵 邵亚辉 余友林 刘正新

苏州中来民生能源有限公司 相海涛

来源:《太阳能》杂志2019 年第12 期( 总第308 期) P5-11

原标题:上海地区各种光伏组件户外发电性能比较和衰减原因分析

Baidu
map