五部门关于开展2024年新能源汽车下乡活动的通知
无人驾驶还缺远红外热成像传感器
无人驾驶还缺远红外热成像传感器美国东部时间3月19日晚间,一辆 Uber 的自动驾驶汽车在亚利桑那州坦佩市的公共道路上与一名行人相撞,该行人在送往医院后不治身亡。警方在一份声明中称
美国东部时间3月19日晚间,一辆 Uber 的自动驾驶汽车在亚利桑那州坦佩市的公共道路上与一名行人相撞,该行人在送往医院后不治身亡。
警方在一份声明中称:“当时该车辆正往北行驶,一名女性在人行道外穿过一条四车道道路时被它撞倒。”
坦佩市警察局长西尔维娅·莫伊尔(Sylvia Moir)在接受采访时称:“基于受害人是从阴影中突然出现在马路上的,很明显,在任何一种模式(无人驾驶或人为驾驶)下,都很难避免这种碰撞。”
这起意外事故将不仅影响Uber的自动驾驶的计划,还将影响到整个无人驾驶行业最终发布能在公共道路上行驶的无人汽车的计划。
这则新闻将“无人驾驶技术”推向热搜。
现有无人驾驶技术路线优缺点
目前,国际上自动驾驶环境感知的技术路线主要有两种:一种是以特斯拉为代表的毫米波雷达主导的多传感器融合方案,另一种以高成本激光雷达为主导,典型代表如谷歌Waymo。我们来分析一下这两条线路对前方路况分析所使用的传感器:
特斯拉的无人驾驶方案以毫米波雷达+可见光摄像头为主,最开始有MobileEye的参与,以可见光摄像头为主,毫米波雷达作为辅助。出现撞卡车事件后,Tesla改为毫米波雷达为主,可见光摄像头为辅。
谷歌的方案基本上是以激光雷达为主,毫米波雷达为辅,可见光摄像头几乎不参与。谷歌似乎对可见光摄像头一直不感冒,即使涉及到物体/行为识别,谷歌仍倾向于用三维激光雷达。
从上面我们可以看出目前市面上主流的前向路况检测主要依靠以下三种传感器:毫米波雷达、激光雷达以及可见光摄像头,且只是两个传感器融合。下面我们来分析一下这三种传感器的优劣势:
上表中可以看出,目前主流的针对前向的传感器融合方案都有一个显著的缺点:在恶劣天气情况下,只有毫米波雷达一个单传感器可以起到作用,而毫米波雷达自身又难以识别行人。故现有的技术方案只能在正常天气下工作,在恶劣天气环境下(特别是光线不好的情况)会对路上行人的生命会造成极大的威胁。
首页 下一页 上一页 尾页-
特斯拉股价未来半年下跌幅度或超30%2018-03-20
-
特斯拉Model 3系统遭破解 更多隐藏信息流出2018-03-19
-
特斯拉中控屏芯片升级:更流畅2018-03-17
-
汽车业电动汽车普及难题如何破?效仿特斯拉2018-03-16
-
荷兰特斯拉Model S发生事故 被报与Autopilot相关2018-03-16
-
特斯拉Model 3产能持续堪忧背后的两大故事2018-03-16
-
特斯拉财务副总裁、首席会计官相继离职2018-03-15
-
特斯拉工厂上月进行检修 Model 3再次暂停生产2018-03-15
-
捷豹挑战特斯拉 跨国车企走向纯电动2018-03-14
-
施压特斯拉 大众斥资250亿美元买电动汽车电池2018-03-14
-
上海市回应特斯拉建厂质疑:仍在积极沟通中2018-03-14
-
上海市政府:特斯拉上海建厂一事正在商谈中2018-03-14
-
韩国锂电池材料获新突破 或成特斯拉电池供应商2018-03-13
-
传统车企与特斯拉大战一触即发2018-03-03
-
比肩特斯拉,北汽新能源笑对燃油车市场2018-03-03